Conformal Nets II: Conformal Blocks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of Conformal Blocks

In the Masters Project we give a complete proof of the Factorization theorem in Conformal Field Theory and Local freeness of the sheaf of conformal blocks. We apply these results to give a proof of the Verlinde formula. Except for the part on Verlinde formula (Chapter 8), we mostly follow the description given in [TUY]. For the Verlinde formula, we follow the article [Beau]. We do not claim any...

متن کامل

On intermediate conformal nets

Let A be a completely rational net and A ⊂ B an extension of A with finite index. In this talk we will describe a recent general result which shows that the (maximal version of ) generalized Wall’s conjecture is true for the pair A ⊂ B. When combined with earlier results on cosets and conformal inclusions, this gives infinite families of subfactors from CFT which verify generalized Wall’s conje...

متن کامل

D-brane Conformal Field Theory and Bundles of Conformal Blocks

Conformal blocks form a system of vector bundles over the moduli space of complex curves with marked points. We discuss various aspects of these bundles. In particular, we present conjectures about the dimensions of sub-bundles. They imply a Verlinde formula for non-simply connected groups like PGL(n, C). We then explain how conformal blocks enter in the construction of conformal field theories...

متن کامل

The Algebra of Conformal Blocks

Abstract. We study and generalize the connection between the phylogenetic Hilbert functions of Buczynska and Wisniewski [BW] and the Verlinde formula, as discovered by Sturmfels and Xu in [StX]. In order to accomplish this we introduce deformations of algebras of non-abelian theta functions for a general simple complex Lie algebra g structured on the moduli stack of stable punctured curves. We ...

متن کامل

Projectors, Shadows, and Conformal Blocks

We introduce a method for computing conformal blocks of operators in arbitrary Lorentz representations in any spacetime dimension, making it possible to apply bootstrap techniques to operators with spin. The key idea is to implement the “shadow formalism” of Ferrara, Gatto, Grillo, and Parisi in a setting where conformal invariance is manifest. Conformal blocks in d-dimensions can be expressed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2017

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-016-2814-5